Averaging Stochastic Gradient Descent on Riemannian Manifolds

نویسندگان

  • Nilesh Tripuraneni
  • Nicolas Flammarion
  • Francis Bach
  • Michael I. Jordan
چکیده

We consider the minimization of a function defined on a Riemannian manifold M accessible only through unbiased estimates of its gradients. We develop a geometric framework to transform a sequence of slowly converging iterates generated from stochastic gradient descent (SGD) on M to an averaged iterate sequence with a robust and fast O(1/n) convergence rate. We then present an application of our framework to geodesically-strongly-convex (and possibly Euclidean non-convex) problems. Finally, we demonstrate how these ideas apply to the case of streaming k-PCA, where we show how to accelerate the slow rate of the randomized power method (without requiring knowledge of the eigengap) into a robust algorithm achieving the optimal rate of convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Variance Reduced Riemannian Eigensolver

We study the stochastic Riemannian gradient algorithm for matrix eigendecomposition. The state-of-the-art stochastic Riemannian algorithm requires the learning rate to decay to zero and thus suffers from slow convergence and suboptimal solutions. In this paper, we address this issue by deploying the variance reduction (VR) technique of stochastic gradient descent (SGD). The technique was origin...

متن کامل

Low-rank tensor completion: a Riemannian manifold preconditioning approach

We propose a novel Riemannian manifold preconditioning approach for the tensor completion problem with rank constraint. A novel Riemannian metric or inner product is proposed that exploits the least-squares structure of the cost function and takes into account the structured symmetry that exists in Tucker decomposition. The specific metric allows to use the versatile framework of Riemannian opt...

متن کامل

A Riemannian Network for SPD Matrix Learning

Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting the Riemannian geometry of the underlying SPD manifold. In this paper we build a Riemannian network to open up a new direction of SPD matrix non-linear learning in a deep architecture. Th...

متن کامل

A Riemannian Network for SPD Matrix Learnin

Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting Riemannian geometry of underlying SPD manifolds. In this paper we build a Riemannian network architecture to open up a new direction of SPD matrix non-linear learning in a deep model. In ...

متن کامل

Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis

Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large, but finite number of loss functions. The present paper proposes a Riemannian stochastic quasi-Newton algorithm with variance reduction (R-SQN-VR). The key challenges of averaging, adding, and subtracting multiple gradients are addressed with notions of retraction and vector transport. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.09128  شماره 

صفحات  -

تاریخ انتشار 2018